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Remote Sensing

Is the art of acquiring data
from a distance

Why?

e Coastal applications
Oceanic applications

Hazard assessment

Natural resource Mmanagement /
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A spacecraft’s view

From GALILEO “Blue Marble”
on its way to Jupiter, 1990 from TERRA (MODIS), 2001
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The remote sensor’s nemesis

Sunglint is avoided in satellite’s imagery due to sensor’s saturation




The remote sensor’s nemesis

Sunglint is avoided in satellite’s imagery due to sensor’s saturation

MODIS Terra - chl _MODIS (HPLC, empirical) | (Ver 4.2.2) 26-

Composite image of the globe by MODIS on-board Terra.

Alternate black swaths are “glint contaminated” data
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Sunglint from orbit

revealing interesting features

Shuttle view,
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Sunglint down to Earth

...anything from the perfect image of the Sun’s disk to a broken pattern
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The “glintometer” apparatus
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The idea

Aim a at a water surface
to measure the

under the of a wave tank

Emphasis is on detection of




18.29 m (WIdth 0.9 m)

wave states,
ranging from to
are created with:

(frequencies up to 10 Hz)
(up to 18 m/s)
(up to 0.5 knots )
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Experimental apparatus - schematics

Data logging:
3 Intensity channels
2 G'meter tilt ch.
1 G'meter T.emp. ch.
1 Ref. Detector ch.
2 Source tilt ch.

“Black rainbow” Glintometer
High-speed
digital camer

|

Glintometer
apparatus

hermo- rol o
anemometer Measurement)

/1 . 3 Elevation chs.

| Surface Imaging

pra

‘ Wave tank .
/ e Water, air temperature

ILight bbx & gradienti

e Wind speed

Reference
detector
channels
Elevation
channels
polarization
channels

PROCESSING
IRCUIT




COLLIMATOR
KINEMATIC MOUNT
LINEAR POLARIZER
BEAM-SAMPLER MOUNT
ND FILTER

FOCUSING LENS
REFERENCE DETECTOR
IRIS

CARRIAGE

GEARED HEAD

SLIDING PLATE

The source

e fiber-coupled laser diode (

e polarization state selected by a

linear polarizer

° beam diameter controlled by
interchangeable collimators

e reference detector sampling the

OPTICAL FIBER

beam for normalization purposes

e Tilt-sensors equipped (pitch & roll)

RAINBOW RAIL
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The “glintometer”

A RIS

B BAFFLE

C NON-POLARIZING BS
D POLARIZING BS

E FOCUSING LENS

F SCALAR INT. DET.
G s-POL. INT. DET.
H p-POL. INT. DET.
I POINTING MIRROR
J LASER POINTER
K GEARED HEAD
— & L CARRIAGE

2% M RAINBOW RAIL

N OPTICAL BENCH

e Custom-built photopolarimeter

e A non-polarizing beamsplitter sends
50% of the incoming intensity to a
polarizing beamsplitter, to separate s-

and p-component

e Simultaneously detects the intensities
associated with three of the four

elements of the Stokes vector (I, Q, U)

e A fast 16-bit datalogger collects data

with suitable sampling frequency.

e Tilt sensor equipped (pitch & roll)
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The imaging system

e 12-bit CCD camera, B&W
e 60 fps

e Subsurface, linear-gradient illumination

Tlme series at one pixel location (5s) Normalized probability distributions
0 0.16

GRAVITY WAVES

CAPILLARY WAVES
Cross-tank Pixel number

Down-tank Pixel number
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Putting it all together

A special mount (% ") has been assembled
to move source and detector across polar angles

\

',Q

Ligh¥aa Life vaisiiiss




Fresnel reflectance
over a flat water surface

Fresnel reflectance on a flat water surface

R, experimental

Rp experimental E
R_theoretical, n =1.34 "

— Rp theoretical, nw=1 .34
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At the , the p-component of light is suppressed.
When was such a dataset collected first?
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Glints as Fresnel reflectance

Logging the output from the and the
we obtain an actual representation of the wave profile with glints overlapped
with the slopes from which they originate!
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s-polarization
Local surface elevation

start running down the tank
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Making waves, the birth of glints

— s-polarization intensity — s-polarization intensity
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e Glints exist only when the reflected beam is observed through a limited aperture

e The width (tangential velocity) of glints depends on the observation distance
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Investigation on glint statistics
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Case study

Source and glintometer at 30° from zenith

e Gravity wave state

1.25 Hz, 1.3 V peak-to-peak signal corresponding to a 2.6 cm

piston linear displacement, 1.5 cm total wave height

e Capillary wave state

Wind speed 3.1 m/s

e Mixed Gravity-Capillary wave state

Overlap of the states above




Glint statistics I:
glint-to-glint intervals and glint durations

Possible glint sequence on gravity-wave profile
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Wave slope distributions

Capillary waves
- — - Gravity waves
—— Gravity+Capillary waves !'
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Gravity waves max slope:

Capillary and gravity-capillary waves max slope:




Chaoticity and Attractor plots

Attractor plots are used to analyze to level of chaoticity of a system,
by showing the

Steady state values of p,, “Period Three Implies Chaos”

1.
P

t, interval

t(nfl) interval Chaaotic region
«—(r=3.00)

p,, converges to a limit

p,, oscillates between values

LIS
t, interval

BIFURCATION DIAGRAM

Pra=R,(1-P,)
Starting value p = .02

Value of r

The road to chaos:
bifurcation diagram of the logistic map
(possible long-term population values

of the logistic function)

t, interval

NASA




Glint statistics 1I1:
attractor plot

0.8 s interval due to 1.25 Hz paddle frequency (17%)

Gravity glints attractor plot

skipping glints for an
entire wave period

<10
alternating 0.5 (<1%)
and 0.3 s
intervals (26%)

n-tn interval (s)

skipping glints
due to cross-tank

- components (15%)
0-G(n—1)ct)Hsinterv;I (s) "2 e
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Glint statistics 1I1:
attractor plots

Capillary glints attractor plot Gravity + Capillary glints attractor plot

n-th interval (s)
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The Hilbert-Huang Transform

Applies to non-linear, non-stationary time series
Gives detailed view of the scales of the phenomenon

Intrinsic Mode Functions
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e cl: Large-scale storms, detectable since '90s

e c2: Half-monthly tides
e c8: Monthly tides (+El Nifio events)




HHT results:

Scale component extracted

Gravity waves Capillary waves Gravity-capillary waves
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HHT results:
HHT marginal probability vs FFT power spectrum

FFT alnd HHT of lslope timelseries

Gravity wave state
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HHT - Slope spectral density, marginal distribution

Higher-order
harmonics

Frequency (Hz)

The HHT does not rely on harmonics
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Conclusions

e Integrated experimental apparatus successfully detects BRDF

signatures over a (controlled) wavy water surface
e Fresnel nature of “atomic” glints outlined

e Statistical analysis shows the fundamental differences between
gravity and capillary glints, with glints originating from a

mixed state behaving essentially like capillary glints

e Gravity attractor-plot features successfully interpreted in terms

of glint time series and surface statistics

e Illustrated the merits of the HHT technique in describing

non-linear, non-stationary systems such as water waves
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Midnight at
Nordaustlandet,

Svalbard




